Post graduate Exam (Basic Engineering Sciences) Branch: Engineering Mathematics (Master 500)

Menofia University Faculty of Engineering Academic Year: 2015-2016 Department: Basic Eng. Sci.		Minoufia University	Subject: basic topic in Linear Algebra Time Allowed: 3 hours Date: 6/6/2016 Max Marks: 100
Allowed Tables and Charts : None Answer all the following questions:			
Q.1	 (A) Write the tensors terms contained in S = a_{ij}xⁱx^j taking n=3. (B) Compare between symmetric and anti-symmetric tensors. (C) Use the mathematical induction to prove that: i) (a+b)ⁿ = ∑_{k=0}ⁿ (n/k) a^{n-k}b^k ii) 10ⁿ⁺¹+3(10ⁿ)+5 is divisible by 9. for all natural numbers n. (D) Define the orthogonal and positive definite tensors. 		
Q.2	(A) Find a solution of the following linear system ,if it is possible: $x_1 + 2x_2 + x_3 - x_4 + 2x_5 = 2$ $x_1 + 4x_2 + 5x_3 - 3x_4 + 8x_5 = -2$ $-2x_1 - x_2 + 4x_3 - x_4 + 5x_5 = -10$ $3x_1 + 7x_2 + 5x_3 - 4x_4 + 9x_5 = 4$ (B) Given $A = \begin{bmatrix} -4 & 14 & 0 \\ -5 & 13 & 0 \\ -1 & 0 & 2 \end{bmatrix}$ i- Determine the inverse of A. ii- Diagonalize A iii- Find A^n		

[Q.2 (30 mark)]

Q.3

(A) Using Boolean algebra techniques, simplify the expression:

$$AB + A(B + C) + B(B + C)$$

(B) Determine the truth table for the following standard POS expression:

$$(A+B+C)(A+\overline{B}+C)(A+\overline{B}+\overline{C})(\overline{A}+B+\overline{C})(\overline{A}+\overline{B}+C)$$

(C) Map the following standard SOP expressions on a Karnaugh map:

$$i) \quad \overline{AB}CD + \overline{AB}\overline{CD} + AB\overline{CD} + AB\overline{CD} + AB\overline{CD} + AB\overline{CD} + \overline{AB}\overline{CD} + \overline{AB}\overline{CD}$$

ii)
$$(\overline{A} + \overline{B} + C + D) + (\overline{A} + B + \overline{C} + \overline{D}) + (A + B + \overline{C} + D) + (\overline{A} + \overline{B} + \overline{C} + \overline{D}) + (A + B + \overline{C} + \overline{D})$$

(D) Reduce the combinational logic circuit in the following figure to a minimum form.

With my best wishes Dr. Z.M. Hendawy